A High-Order Iterative Scheme for a Nonlinear Pseudoparabolic Equation and Numerical Results
نویسندگان
چکیده
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملon a characteristic problem for a third order pseudoparabolic equation
in this paper, we investigate the goursat problem in the class c21(d)cn0 (d p) c00 (d q)for a third order pseudoparabolic equation. some results are given concerning the existence and uniquenessfor the solution of the suggested problem.
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملIterative scheme to a coupled system of highly nonlinear fractional order differential equations
In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: 1563-5147,1024-123X
DOI: 10.1155/2021/8886184